A mobile device application to reduce medication errors and time to drug delivery during simulated paediatric cardiopulmonary resuscitation: a multicentre, randomised, controlled, crossover trial.



Vasoactive drug preparation for continuous infusion in children is both complex and time consuming and places the paediatric population at higher risk than adults for medication errors. We developed a mobile device application (app) as a step-by-step guide for the preparation to delivery of drugs requiring continuous infusion. The app has been previously tested during simulation-based resuscitations in a previous single-centre trial. In this trial, our aim was to assess this app in various hospital settings.


We did a prospective, multicentre, randomised, controlled, crossover trial to compare this app with an internationally used drug-infusion-rates table for the preparation of continuous drug infusion during standardised, simulation-based, paediatric post-cardiac arrest scenarios using a high-fidelity manikin. The scenarios were split into two study periods to assess the two preparation methods consecutively, separated by a washout distraction manoeuvre. Nurses in six paediatric emergency centres in Switzerland were randomly assigned (1:1) to start the scenario with either the app or the infusion-rates table and then complete the scenario using the other preparation method. The primary endpoint was the proportion of participants committing a medication error, which was defined as a deviation from the correct weight dose of more than 10%, miscalculation of the infusion rate, misprogramming of the infusion pump, or the inability to calculate drug dosage without calculation and guidance help from the study team. The medication error proportions observed with both preparation methods were compared by pooling both study periods, with paired data analysed using the unconditional exact McNemar test for dependent groups with a two-sided α level of 0·05. We did sensitivity analyses to investigate the carryover effect. This trial is registered with ClinicalTrials.gov, number NCT03021122.


From March 1 to Dec 31, 2017, we randomly assigned 128 nurses to start the scenario using the app (n=64) or the infusion-rates table (n=64). Among the 128 drug preparations associated with each of the two methods, 96 (75%, 95% CI 67-82) delivered using the infusion-rates table were associated with medication errors compared with nine (7%, 3-13) delivered using the mobile app. Medication errors were reduced by 68% (95% CI 59-76%; p<0·0001) with the app compared with the table, as was the mean time to drug preparation (difference 148·2 s [95% CI 124·2-172·1], a 45% reduction; p<0·0001) and mean time to drug delivery (168·5 s [146·1-190·8], a 40% reduction; p<0·0001). Hospital size and nurses’ experience did not modify the intervention effect. We detected no carryover effect.


Critically ill children are particularly vulnerable to medication errors. A mobile app designed to help paediatric drug preparation during resuscitation with the aim to significantly reduce the occurrence of medication errors, drug preparation time, and delivery time could have the potential to change paediatric clinical practice in the area of emergency medicine.

Link to article here


Babies that don’t cruise rarely bruise – film: Pathway for non-mobile baby with bruising or a suspicious mark

babies referral

This pathway describes the action that a practitioner should take if they become aware of a bruise or suspicious mark on a non-mobile baby.   A new animation film, developed by a multi-agency partnership group led by Dr Becky Sands (Designated Doctor for Safeguarding), is now available to help promote the pathway.  The film provides advice to practitioners about seeking an explanation from the babies carers  and what action to take if no explanation is provided or an unlikely or inadequate explanation is given.

Please take a look at the animation and share it with your colleagues.

The film promotes the ‘bruising in babies pathway’ which has recently been updated

The ‘bruising in babies pathway’ can be found in the resources section of the procedures.

Link to the article page here

Climate change and global child health: what can paediatricians do?

927_Arctic-amplification nasa
Image: NASA

A little over a decade ago, the Lancet Climate Commission concluded that anthropogenic climate change threatens to undermine the past 50 years of gains in public health and, conversely, that a comprehensive response to climate change could be ‘the greatest global health opportunity of the 21 st century’. In a recent review, experts quantified the impact of climate change on health and estimated that heatwaves between 2000 and 2016 had resulted in 5.3% lower outdoor manual productivity and that economic losses from climate change related events in 2016 alone totalled almost US$129 billion.

Children pay a disproportionate price for climate change, with some estimates suggesting up to 88% of the burden of disease related to it. Such excess risks are related to a combination of physiological vulnerability, especially among young children, as well as risk of exposure. In a study of nearly 500 000 deaths in the Catalonia region of Spain during the warm seasons of 1983–2006, Basagaña et al evaluated the association between the occurrence of extremely hot days (days with maximum temperature above the 95th percentile) and mortality. They documented 50% excess mortality among infants in the perinatal period during these extremely hot days (relative risk of death from conditions originating in the perinatal period was 1.53 (95% CI 1.16 to 2.02).

Amid the doomsday scenarios that rapid climate change foretells, there is room for optimism that collective action can bring about change. With the sustainable development goals that have been signed into a global compact by 193 countries of the world, there are unprecedented opportunities to make real and lasting strides in towards better health and well-being for generations to come (starting with our children of today). Paediatricians can play a pivotal role in translating research to practice and leading a global movement that can address many determinants of planetary health and health inequities within a generation.

Link to article here

A Pink Milk Bottle Mystery

pink milk
Image: Pixabay

The mother of a 5-week-old term infant brings the infant to the pediatrician’s office, along with a plastic milk bottle used to feed the baby. The bottle has splotches of red-pink material on the inside (Fig. 1). She wants to know what is happening to the milk in the bottle. The mother has been breastfeeding and has recently been transitioning to pumped breast milk in preparation for returning to work. For the past few days, she has noticed that the breast milk remaining in bottles that were left in a sink overnight after evening feedings turns bright pink by morning. The breast milk has been normal in color during pumping, in the pump tubing, and in bottles stored in the refrigerator before feedings.

The mother denies taking any medications, herbal supplements, or illicit drugs while breastfeeding. The pregnancy was complicated by multiple urinary tract infections, which were treated with nitrofurantoin and trimethoprim-sulfamethoxazole. She denies any signs or symptoms of mastitis.

The infant has been asymptomatic, feeding well, and is gaining weight. Birth was uncomplicated. The infant is afebrile and is well-nourished, well-hydrated, and in no distress. There are no lesions or abnormal findings on the oral mucosa. There is no lymphadenopathy. The remainder of the physical examination appears normal.

The pediatrician sent samples of pink exudate in the bottle as well as stored, expressed breast milk (which had not yet been fed to the infant) for culture. Both cultures yielded the same microbe.

What microbe is the most likely cause of this scenario? When the pediatrician calls to tell you this story and the culture results, what advice do you give?

Link to article for the rest of the story here

Probiotics for Children With Recurrent Abdominal Pain

Image: Pixabay

JAMA Pediatrics

Clinical Question  Do dietary interventions, such as probiotics, improve pain in children with recurrent abdominal pain?

Clinical Application  Compared with placebo, children who were treated with probiotic preparations were more likely to experience improvement in pain in the short term (odds ratio, 1.63; 95% CI, 1.07-2.47), suggesting that clinicians could consider probiotics as part of a holistic management strategy in recurrent abdominal pain.

Link to article here

Brain scan may predict long-term disabilities in babies with brain injury – NIHR Signal

Magnetic resonance spectroscopy, a type of scan which shows brain biochemistry, could help predict whether there will be long-term effects of brain injury (encephalopathy) in new-born babies. It is usually done alongside an MRI.

Researchers scanned 82 babies being treated for brain injury, using MRI and also magnetic resonance spectroscopy. One biomarker tested at seven days after birth, thalamic N-acetylaspartate, correctly identified all babies who went on to have adverse developmental outcomes at 23 months. It was also very good at distinguishing babies who did not have adverse outcomes.

Neonatal brain injury can happen for many reasons, including oxygen deprivation. Babies with signs of brain injury, such as seizures, are usually treated by cooling, which may reduce brain damage. Researchers are usually hampered when looking at ways to improve outcomes by the need to wait years to find out their effect on child development. Therefore, the apparent accuracy of magnetic resonance spectroscopy scans will make this approach a welcome tool.

Link to article here

Immunoglobulin for alloimmune hemolytic disease in neonates – Cochrane Library


In alloimmune HDN, maternal antibodies (circulating proteins that are produced by the immune system in response to the presence of a foreign substance) are produced against fetal blood cells. These antibodies are transferred across the placenta and destroy red blood cells, leading to fetal anemia (deficiency of red cells in the unborn baby). Intrauterine (within the womb) blood transfusion is used to treat severe fetal anemia. After birth, the antibodies persist in the infant and cause hyperbilirubinemia (a raised blood level of an orange‐yellow pigment (bilirubin, a waste product of a degrading red blood cell) with the risk of serious brain damage (kernicterus) and anemia. Traditional treatment of hyperbilirubinemia consists of (intensive) phototherapy (light treatment) and exchange transfusion (where the baby’s blood is replaced with that of a donor; ET). Because ET is an invasive, high risk procedure, alternative treatments such as intravenous immunoglobulin (IVIg), have been investigated. IVIg is thought to reduce the rate of hemolysis and consequently the need for ETs.

Study characteristics

We searched the medical literature to 19 May 2017 and found nine randomized (clinical studies where people are randomly put into one of two or more treatment groups) or partly (quasi) randomized trials (including 658 participants) that assessed the efficiency of IVIg in infants with alloimmune HDN.

Key results

Analysis of all included studies showed a reduction in the need for and number of ETs in infants treated with IVIg combined with phototherapy compared to infants treated with phototherapy only. However, this was not confirmed in an analysis of the two placebo‐controlled studies (where a pretend treatment was given). There was no difference in the need for or number of top‐up transfusions.

Quality of evidence

The evidence from the studies was very low quality. However, two studies used a placebo, thereby minimizing bias and allowing blinding of the researchers assessing the response. These studies were consistent with each other and yielded moderate quality evidence (with a relatively small total number of participants involved (172) being the only reason to not regard the level of evidence from them as high) that IVIg was ineffective in preventing ET or top‐up transfusions.


Based on all included studies, we could make no conclusions on the benefit of IVIg in preventing ET or top‐up transfusion. However, the two placebo‐controlled trials provided evidence of moderate quality that IVIg was ineffective in preventing ET or top‐up transfusion, and therefore routine use in alloimmune HDN should not be recommended. However, since there was some evidence that IVIg reduced hemolysis (in laboratory studies), future high‐quality studies are needed to determine whether IVIg has limited role in some infants with alloimmune HDN.

Link to article here